Two-dimensional localized chaotic patterns in parametrically driven systems

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)


We study two-dimensional localized patterns in weakly dissipative systems that are driven parametrically. As a generic model for many different physical situations we use a generalized nonlinear Schrödinger equation that contains parametric forcing, damping, and spatial coupling. The latter allows for the existence of localized pattern states, where a finite-amplitude uniform state coexists with an inhomogeneous one. In particular, we study numerically two-dimensional patterns. Increasing the driving forces, first the localized pattern dynamics is regular, becomes chaotic for stronger driving, and finally extends in area to cover almost the whole system. In parallel, the spatial structure of the localized states becomes more and more irregular, ending up as a full spatiotemporal chaotic structure.

Idioma originalInglés
Páginas (desde-hasta)52216
Número de páginas1
PublicaciónPhysical Review E
EstadoPublicada - 1 may. 2017


Profundice en los temas de investigación de 'Two-dimensional localized chaotic patterns in parametrically driven systems'. En conjunto forman una huella única.

Citar esto