TY - JOUR
T1 - Spatiotemporal variability of modern precipitation δ 18 O in the central Andes and implications for paleoclimate and paleoaltimetry estimates
AU - Fiorella, Richard P.
AU - Poulsen, Christopher J.
AU - Pillco Zolá, Ramiro S.
AU - Barnes, Jason B.
AU - Tabor, Clay R.
AU - Ehlers, Todd A.
N1 - Publisher Copyright:
© 2015. American Geophysical Union. All Rights Reserved.
PY - 2015
Y1 - 2015
N2 - Understanding the patterns of rainfall isotopic composition in the central Andes is hindered by sparse observations. Despite limited observational data, stable isotope tracers have been commonly used to constrain modern-to-ancient Andean atmospheric processes, as well as to reconstruct paleoclimate and paleoaltimetry histories. Here, we present isotopic compositions of precipitation (δ 18 O p and δD p ) from 11 micrometeorological stations located throughout the Bolivian Altiplano and along its eastern flank at ~21.5°S. We collected and isotopically analyzed 293 monthly bulk precipitation samples (August 2008 to April 2013). δ 18 O p values ranged from -28.0‰to 9.6‰, with prominent seasonal cycles expressed at all stations. We observed a strong relationship between the δ 18 O p and elevation, though it varies widely in time and space. Constraints on air sourcing estimated from atmospheric back trajectory calculations indicate that continental-scale climate dynamics control the interannual variability in δ 18 O p , with upwind precipitation anomalies having the largest effect. The impact of precipitation anomalies in distant air source regions to the central Andes is in turn modulated by the Bolivian High. The importance of the Bolivian High is most clearly observed on the southern Bolivian Altiplano. However, monthly variability among Altiplano stations can exceed 10‰in δ 18 O p on the plateau and cannot be explained by elevation or source variability, indicating a nontrivial role for local scale effects on short timescales. The strong influence of atmospheric circulation on central Andean δ 18 O p requires that paleoclimate and paleoaltimetry studies consider the role of South American atmospheric paleocirculation in their interpretation of stable isotopic values as proxies.
AB - Understanding the patterns of rainfall isotopic composition in the central Andes is hindered by sparse observations. Despite limited observational data, stable isotope tracers have been commonly used to constrain modern-to-ancient Andean atmospheric processes, as well as to reconstruct paleoclimate and paleoaltimetry histories. Here, we present isotopic compositions of precipitation (δ 18 O p and δD p ) from 11 micrometeorological stations located throughout the Bolivian Altiplano and along its eastern flank at ~21.5°S. We collected and isotopically analyzed 293 monthly bulk precipitation samples (August 2008 to April 2013). δ 18 O p values ranged from -28.0‰to 9.6‰, with prominent seasonal cycles expressed at all stations. We observed a strong relationship between the δ 18 O p and elevation, though it varies widely in time and space. Constraints on air sourcing estimated from atmospheric back trajectory calculations indicate that continental-scale climate dynamics control the interannual variability in δ 18 O p , with upwind precipitation anomalies having the largest effect. The impact of precipitation anomalies in distant air source regions to the central Andes is in turn modulated by the Bolivian High. The importance of the Bolivian High is most clearly observed on the southern Bolivian Altiplano. However, monthly variability among Altiplano stations can exceed 10‰in δ 18 O p on the plateau and cannot be explained by elevation or source variability, indicating a nontrivial role for local scale effects on short timescales. The strong influence of atmospheric circulation on central Andean δ 18 O p requires that paleoclimate and paleoaltimetry studies consider the role of South American atmospheric paleocirculation in their interpretation of stable isotopic values as proxies.
UR - http://www.scopus.com/inward/record.url?scp=84932151385&partnerID=8YFLogxK
U2 - 10.1002/2014JD022893
DO - 10.1002/2014JD022893
M3 - Artículo
AN - SCOPUS:84932151385
SN - 0148-0227
VL - 120
SP - 4630
EP - 4656
JO - Journal of Geophysical Research
JF - Journal of Geophysical Research
IS - 10
ER -