Localized chaotic patterns in weakly dissipative systems

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

13 Citas (Scopus)


A generalized parametrically driven damped nonlinear Schrödinger equation is used to describe, close to the resonance, the dynamics of weakly dissipative systems, like a harmonically coupled pendula chain or an easy-plane magnetic wire. The combined effects of parametric forcing, spatial coupling, and dissipation allows for the existence of stable non-trivial uniform states as well as homogeneous pattern states. The latter can be regular or chaotic. A new family of localized states that connect asymptotically a non-trivial uniform state with a spatio-temporal chaotic pattern is numerically found. We discuss the parameter range, where these localized structures exist. This article is dedicated to Prof. Helmut R. Brand on the occasion of his 60th birthday.

Idioma originalInglés
Páginas (desde-hasta)141-154
Número de páginas14
PublicaciónEuropean Physical Journal: Special Topics
EstadoPublicada - ene. 2014
Publicado de forma externa

Nota bibliográfica

Funding Information:
D.U. and D.L. would like to thank M.G. Clerc (Univ. of Chile) for valuable discussions on the generalization of the PDDNLS equation. D. L. acknowledges partial financial support from FONDECYT 1120764, Millennium Scientific Initiative, P10−061−F, Basal Program Center for Development of Nanoscience and Nanotechnology (CEDENNA), UTA-project 8750−12. D. U. acknowledges the PhD program fellowship through the Performance Agreement Project’s UTA/Mineduc.


Profundice en los temas de investigación de 'Localized chaotic patterns in weakly dissipative systems'. En conjunto forman una huella única.

Citar esto