Distribution of spiking and bursting in Rulkov’s neuron model

Gonzalo Marcelo Ramírez-Ávila, Stéphanie Depickère, Imre M. Jánosi, Jason A.C. Gallas

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Large-scale brain simulations require the investigation of large networks of realistic neuron models, usually represented by sets of differential equations. Here we report a detailed fine-scale study of the dynamical response over extended parameter ranges of a computationally inexpensive model, the two-dimensional Rulkov map, which reproduces well the spiking and spiking-bursting activity of real biological neurons. In addition, we provide evidence of the existence of nested arithmetic progressions among periodic pulsing and bursting phases of Rulkov’s neuron. We find that specific remarkably complex nested sequences of periodic neural oscillations can be expressed as simple linear combinations of pairs of certain basal periodicities. Moreover, such nested progressions are robust and can be observed abundantly in diverse control parameter planes which are described in detail. We believe such findings to add significantly to the knowledge of Rulkov neuron dynamics and to be potentially helpful in large-scale simulations of the brain and other complex neuron networks.

Idioma originalInglés
Páginas (desde-hasta)319-328
Número de páginas10
PublicaciónEuropean Physical Journal: Special Topics
Volumen231
N.º3
DOI
EstadoPublicada - abr. 2022

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s).

Huella

Profundice en los temas de investigación de 'Distribution of spiking and bursting in Rulkov’s neuron model'. En conjunto forman una huella única.

Citar esto