Classification of cardiovascular time series based on different coupling structures using recurrence networks analysis

Gonzalo Marcelo Ramírez Ávila, Andrej Gapelyuk, Norbert Marwan, Thomas Walther, Holger Stepan, Jürgen Kurths, Niels Wessel

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

27 Citas (Scopus)

Resumen

We analyse cardiovascular time series with the aim of performing early prediction of preeclampsia (PE), a pregnancy-specific disorder causing maternal and foetal morbidity and mortality. The analysis is made using a novel approach, namely the ε- recurrence networks applied to a phase space constructed by means of the time series of the variabilities of the heart rate and the blood pressure (systolic and diastolic). All the possible coupling structures among these variables are considered for the analysis. Network measures such as average path length, mean coreness, global clustering coefficient and scale-local transitivity dimension are computed and constitute the parameters for the subsequent quadratic discriminant analysis. This allows us to predict PE with a sensitivity of 91.7 per cent and a specificity of 68.1 per cent, thus validating the use of this method for classifying healthy and preeclamptic patients.

Idioma originalInglés
Número de artículo20110623
PublicaciónPhilosophical transactions. Series A, Mathematical, physical, and engineering sciences
Volumen371
N.º1997
DOI
EstadoPublicada - 28 ago. 2013

Huella

Profundice en los temas de investigación de 'Classification of cardiovascular time series based on different coupling structures using recurrence networks analysis'. En conjunto forman una huella única.

Citar esto