TY - JOUR
T1 - A novel glycoside hydrolase 43-like enzyme from Clostridium boliviensis is an endo-xylanase and a candidate for xylooligosaccharide production from different xylan substrates
AU - Salas-Veizaga, Daniel Martin
AU - Rocabado-Villegas, Leonardo Roberto
AU - Linares-Pastén, Javier A.
AU - Gudmundsdottir, Elisabet Eik
AU - Hreggvidsson, Gudmundur Oli
AU - Álvarez-Aliaga, María Teresa
AU - Adlercreutz, Patrick
AU - Karlsson, Eva Nordberg
N1 - Publisher Copyright:
© 2024 American Society for Microbiology. All rights reserved.
PY - 2024/4
Y1 - 2024/4
N2 - An uncharacterized gene encoding a glycoside hydrolase family 43-like enzyme from Clostridium boliviensis strain E-1 was identified from genomic sequence data, and the encoded enzyme, CbE1Xyn43-l, was produced in Escherichia coli. CbE1Xyn43-l (52.9 kDa) is a two-domain endo-β-xylanase consisting of a C-terminal CBM6 and a GH43-like catalytic domain. The positions of the catalytic dyad conserved in GH43, the catalytic base (Asp74), and proton donor (Glu240) were identified in alignments including GH43-enzymes of known 3D-structure from different subfamilies. CbE1Xyn43-l is active at pH 7.0–9.0, with optimum temperature at 65°C, and a more than 7 days’ half-life in irreversible deactivation studies at this temperature. The enzyme hydrolyzed birchwood xylan, quinoa stalks glucuronoarabinoxylan, and wheat arabinoxylan with xylotriose and xylotetraose as major hydrolysis products. CbE1Xyn43-l also released xylobiose from pNPX2 with low turnover (kcat of 0.044 s−1) but was inactive on pNPX, showing that a degree of polymerization of three (DP3) was the smallest hydrolyzable substrate. Divalent ions affected the specific activity on xylan substrates, which dependent on the ion could be increased or decreased. In conclusion, CbE1Xyn43-l from C. boliviensis strain E-1 is the first characterized member of a large group of homologous hypothetical proteins annotated as GH43-like and is a thermostable endo-xylanase, producing xylooligosaccharides of high DP (xylotriose and xylotetraose) producer.
AB - An uncharacterized gene encoding a glycoside hydrolase family 43-like enzyme from Clostridium boliviensis strain E-1 was identified from genomic sequence data, and the encoded enzyme, CbE1Xyn43-l, was produced in Escherichia coli. CbE1Xyn43-l (52.9 kDa) is a two-domain endo-β-xylanase consisting of a C-terminal CBM6 and a GH43-like catalytic domain. The positions of the catalytic dyad conserved in GH43, the catalytic base (Asp74), and proton donor (Glu240) were identified in alignments including GH43-enzymes of known 3D-structure from different subfamilies. CbE1Xyn43-l is active at pH 7.0–9.0, with optimum temperature at 65°C, and a more than 7 days’ half-life in irreversible deactivation studies at this temperature. The enzyme hydrolyzed birchwood xylan, quinoa stalks glucuronoarabinoxylan, and wheat arabinoxylan with xylotriose and xylotetraose as major hydrolysis products. CbE1Xyn43-l also released xylobiose from pNPX2 with low turnover (kcat of 0.044 s−1) but was inactive on pNPX, showing that a degree of polymerization of three (DP3) was the smallest hydrolyzable substrate. Divalent ions affected the specific activity on xylan substrates, which dependent on the ion could be increased or decreased. In conclusion, CbE1Xyn43-l from C. boliviensis strain E-1 is the first characterized member of a large group of homologous hypothetical proteins annotated as GH43-like and is a thermostable endo-xylanase, producing xylooligosaccharides of high DP (xylotriose and xylotetraose) producer.
KW - birchwood xylan
KW - Clostridium boliviensis strain E-1
KW - endo-β-xylanase
KW - GH43-L
KW - quinoa stalks glucuronoarabinoxylan
KW - wheat arabinoxylan
KW - xylooligosac charides
UR - http://www.scopus.com/inward/record.url?scp=85190833116&partnerID=8YFLogxK
U2 - 10.1128/aem.02223-23
DO - 10.1128/aem.02223-23
M3 - Artículo
AN - SCOPUS:85190833116
SN - 0099-2240
VL - 90
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 4
ER -