TY - JOUR
T1 - Physicochemical and structural properties of starch from five Andean crops grown in Bolivia
AU - Fuentes, Catalina
AU - Perez-Rea, Daysi
AU - Bergenståhl, Björn
AU - Carballo, Sergio
AU - Sjöö, Malin
AU - Nilsson, Lars
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/3/15
Y1 - 2019/3/15
N2 - Three Andean grains - amaranth (Amaranthus caudatus), quinoa (Chenopodium quinoa), canihua (Chenopodium pallidicaulle) - and two Andean roots starches - achira (Canna indica), maca (Lepidium meyenii) - were studied. Physicochemical properties such as granule size, crystallinity, pasting properties among other as well as structural properties such as root-mean-square radius (rrms), weight-average molar mass (Mw) and apparent density (ρapp) were analyzed in order to evaluate the relation between them. Grains were similar in most of their characteristics as roots in their i.e. granule size, shape, type of crystallinity, Mw and rrms varied according to botanical source. The starch granules from grains were in a narrow diameter range (0.5 to 2 μm) and displayed A-type X-ray diffraction pattern (XRD). Roots starch had a wide granule diameter range (1 to 100 μm) and displayed a B-type XRD. The amylose content varied between 0 and 48% where amaranth had the lowest value and achira had the highest. Furthermore, quinoa and canihua starches had very low breakdown in pasting properties, indicating high stability during cooking. A model is proposed that relates pasting properties i.e. peak viscosity and final viscosity with ρapp, gelatinization enthalpy, granule size and amylose content.
AB - Three Andean grains - amaranth (Amaranthus caudatus), quinoa (Chenopodium quinoa), canihua (Chenopodium pallidicaulle) - and two Andean roots starches - achira (Canna indica), maca (Lepidium meyenii) - were studied. Physicochemical properties such as granule size, crystallinity, pasting properties among other as well as structural properties such as root-mean-square radius (rrms), weight-average molar mass (Mw) and apparent density (ρapp) were analyzed in order to evaluate the relation between them. Grains were similar in most of their characteristics as roots in their i.e. granule size, shape, type of crystallinity, Mw and rrms varied according to botanical source. The starch granules from grains were in a narrow diameter range (0.5 to 2 μm) and displayed A-type X-ray diffraction pattern (XRD). Roots starch had a wide granule diameter range (1 to 100 μm) and displayed a B-type XRD. The amylose content varied between 0 and 48% where amaranth had the lowest value and achira had the highest. Furthermore, quinoa and canihua starches had very low breakdown in pasting properties, indicating high stability during cooking. A model is proposed that relates pasting properties i.e. peak viscosity and final viscosity with ρapp, gelatinization enthalpy, granule size and amylose content.
KW - Andean crops
KW - Grans
KW - Properties
KW - Roots
KW - Starch
UR - http://www.scopus.com/inward/record.url?scp=85058620736&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2018.12.120
DO - 10.1016/j.ijbiomac.2018.12.120
M3 - Artículo
C2 - 30557639
AN - SCOPUS:85058620736
SN - 0141-8130
VL - 125
SP - 829
EP - 838
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
ER -