Oxygen isotopes in tree rings show good coherence between species and sites in Bolivia

Jessica C.A. Baker, Sarah F.P. Hunt, Santiago J. Clerici, Robert J. Newton, Simon H. Bottrell, Melanie J. Leng, Timothy H.E. Heaton, Gerhard Helle, Jaime Argollo, Manuel Gloor, Roel J.W. Brienen

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


A tree ring oxygen isotope (δ18OTR) chronology developed from one species (Cedrela odorata) growing in a single site has been shown to be a sensitive proxy for rainfall over the Amazon Basin, thus allowing reconstructions of precipitation in a region where meteorological records are short and scarce. Although these results suggest that there should be large-scale (>100km) spatial coherence of δ18OTR records in the Amazon, this has not been tested. Furthermore, it is of interest to investigate whether other, possibly longer-lived, species similarly record interannual variation of Amazon precipitation, and can be used to develop climate sensitive isotope chronologies. In this study, we measured δ18O in tree rings from seven lowland and one highland tree species from Bolivia. We found that cross-dating with δ18OTR gave more accurate tree ring dates than using ring width. Our "isotope cross-dating approach" is confirmed with radiocarbon "bomb-peak" dates, and has the potential to greatly facilitate development of δ18OTR records in the tropics, identify dating errors, and check annual ring formation in tropical trees. Six of the seven lowland species correlated significantly with C. odorata, showing that variation in δ18OTR has a coherent imprint across very different species, most likely arising from a dominant influence of source water δ18O on δ18OTR. In addition we show that δ18OTR series cohere over large distances, within and between species. Comparison of two C. odorata δ18OTR chronologies from sites several hundreds of kilometres apart showed a very strong correlation (r=0.80, p<0.001, 1901-2001), and a significant (but weaker) relationship was found between lowland C. odorata trees and a Polylepis tarapacana tree growing in the distant Altiplano (r=0.39, p<0.01, 1931-2001). This large-scale coherence of δ18OTR records is probably triggered by a strong spatial coherence in precipitation δ18O due to large-scale controls. These results highlight the strength of δ18OTR as a precipitation proxy, and open the way for temporal and spatial expansion of precipitation reconstructions in South America.

Original languageEnglish
Pages (from-to)298-308
Number of pages11
JournalGlobal and Planetary Change
StatePublished - 1 Oct 2015

Bibliographical note

Funding Information:
We thank Vincent Vos, Guido Pardo, Don Nico Divico and Nazareno Martinez for their help with the fieldwork in Pando, Bolivia in 2011 and logistic planning. This work has been supported principally by the Natural Environmental Research Council through a NERC Research Fellowship to RJWB (grant NE/L0211160/1 ), NERC standard grant ( NE/K01353X/1 ), and by NERC Isotope Geosciences Facilities grants ( IP-1424-0514 and IP-1314-0512 ). JCAB is funded by a NERC Doctoral Training Grant ( NE/L501542/1 ).

Publisher Copyright:
© 2015 The Authors.


  • Bolivia
  • Cross-dating
  • Oxygen isotopes
  • Tree rings
  • Tropical forest


Dive into the research topics of 'Oxygen isotopes in tree rings show good coherence between species and sites in Bolivia'. Together they form a unique fingerprint.

Cite this