Abstract
Abstract: Infections are common in patients with diabetes, but increasing antibiotic resistance hampers successful bacterial clearance and calls for alternative treatment strategies. Hypoxia-inducible factor 1 (HIF-1) is known to influence the innate immune defense and could therefore serve as a possible target. However, the impact of high glucose on HIF-1 has received little attention and merits closer investigation. Here, we show that higher levels of proinflammatory cytokines and CAMP, encoding for the antimicrobial peptide cathelicidin, LL-37, correlate with HIF-1 in type 2 diabetic patients. Chemical activation of HIF-1 further enhanced LL-37, IL-1β, and IL-8 in human uroepithelial cells exposed to high glucose. Moreover, HIF-1 activation of transurethrally infected diabetic mice resulted in lower bacterial load. Drugs activating HIF-1 could therefore in the future potentially have a therapeutic role in clearing bacteria in diabetic patients with infections where antibiotic treatment failed. Key messages: • Mohanty et al. “HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients.” • Our study highlights induction of the antimicrobial peptide, LL-37, and strengthening of the innate immunity through hypoxia-inducible factor 1 (HIF-1) in diabetes. • Our key observations are: 1. HIF-1 activation increased LL-37 expression in human urothelial cells treated with high glucose. In line with that, we demonstrated that patients with type 2 diabetes living at high altitude had increased levels of the LL-37. 2. HIF-1 activation increased IL-1β and IL-8 in human uroepithelial cells treated with high glucose concentration. 3. Pharmacological activation of HIF-1 decreased bacterial load in the urinary bladder of mice with hereditary diabetes. • We conclude that enhancing HIF-1 may along with antibiotics in the future contribute to the treatment in selected patient groups where traditional therapy is not possible.
Original language | English |
---|---|
Pages (from-to) | 101-113 |
Number of pages | 13 |
Journal | Journal of Molecular Medicine |
Volume | 100 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2022 |
Bibliographical note
Funding Information:This research was funded by the Stiftelsen Olle Engkvist Byggmästare, Region Stockholm (ALF project) and Swedish Neurological Association (AB). Swedish International Development Cooperation Agency (CGÖ, EG, SZ). Karolinska Institutet’s Research Foundation (SM, WK, and AB). WK was supported by grants from Siriraj Hospital Mahidol University, Thailand.
Publisher Copyright:
© 2021, The Author(s).
Keywords
- Cytokines
- HIF-1
- LL-37
- Type 2 diabetes
- Urinary tract infections