Effect of natural and semisynthetic pseudoguianolides on the stability of NF-κB: DNA complex studied by agarose gel electrophoresis

Rodrigo Villagomez, Rajni Hatti-Kaul, Olov Sterner, Giovanna Almanza, Javier A. Linares-Pastén

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The nuclear factor κB (NF-κB) is a promising target for drug discovery. NF-κB is a heterodimeric complex of RelA and p50 subunits that interact with the DNA, regulating the expression of several genes; its dysregulation can trigger diverse diseases including inflammation, immunodeficiency, and cancer. There is some experimental evidence, based on whole cells studies, that natural sesquiterpene lactones (Sls) can inhibit the interaction of NF-κB with DNA, by alkylating the RelA subunit via a Michael addition. In the present work, 28 natural and semisynthetic pseudoguianolides were screened as potential inhibitors of NF- κB in a biochemical assay that was designed using pure NF-κB heterodimer, pseudoguianolides and ã1000 bp palindromic DNA fragment harboring two NF-κB recognition sequences. By comparing the relative amount of free DNA fragment to the NF-κB - DNA complex, in a routine agarose gel electrophoresis, the destabilizing effect of a compound on the complex is estimated. The results of the assay and the following structure-activity relationship study, allowed the identification of several relevant structural features in the pseudoguaianolide skeleton, which are necessary to enhance the dissociating capacity of NF-κB-DNA complex. The most active compounds are substituted at C-3 (α-carbonyl), in addition to having the α-methylene-γ-lactone moiety which is essential for the alkylation of RelA.

Original languageEnglish
Article numbere0115819
JournalPLoS ONE
Volume10
Issue number1
DOIs
StatePublished - 23 Jan 2015

Bibliographical note

Publisher Copyright:
© 2015 Villagomez et al.

Fingerprint

Dive into the research topics of 'Effect of natural and semisynthetic pseudoguianolides on the stability of NF-κB: DNA complex studied by agarose gel electrophoresis'. Together they form a unique fingerprint.

Cite this