Challenges and opportunities for managing aquatic mercury pollution in altered landscapes

Heileen Hsu-Kim, Chris S. Eckley, Dario Achá, Xinbin Feng, Cynthia C. Gilmour, Sofi Jonsson, Carl P.J. Mitchell

Research output: Contribution to journalArticlepeer-review

127 Scopus citations

Abstract

The environmental cycling of mercury (Hg) can be affected by natural and anthropogenic perturbations. Of particular concern is how these disruptions increase mobilization of Hg from sites and alter the formation of monomethylmercury (MeHg), a bioaccumulative form of Hg for humans and wildlife. The scientific community has made significant advances in recent years in understanding the processes contributing to the risk of MeHg in the environment. The objective of this paper is to synthesize the scientific understanding of how Hg cycling in the aquatic environment is influenced by landscape perturbations at the local scale, perturbations that include watershed loadings, deforestation, reservoir and wetland creation, rice production, urbanization, mining and industrial point source pollution, and remediation. We focus on the major challenges associated with each type of alteration, as well as management opportunities that could lessen both MeHg levels in biota and exposure to humans. For example, our understanding of approximate response times to changes in Hg inputs from various sources or landscape alterations could lead to policies that prioritize the avoidance of certain activities in the most vulnerable systems and sequestration of Hg in deep soil and sediment pools. The remediation of Hg pollution from historical mining and other industries is shifting towards in situ technologies that could be less disruptive and less costly than conventional approaches. Contemporary artisanal gold mining has well-documented impacts with respect to Hg; however, significant social and political challenges remain in implementing effective policies to minimize Hg use. Much remains to be learned as we strive towards the meaningful application of our understanding for stakeholders, including communities living near Hg-polluted sites, environmental policy makers, and scientists and engineers tasked with developing watershed management solutions. Site-specific assessments of MeHg exposure risk will require new methods to predict the impacts of anthropogenic perturbations and an understanding of the complexity of Hg cycling at the local scale.

Original languageEnglish
Pages (from-to)141-169
Number of pages29
JournalAmbio
Volume47
Issue number2
DOIs
StatePublished - 1 Mar 2018

Bibliographical note

Funding Information:
Acknowledgements This paper was written as part of the synthesis effort for the 13th International Conference on Mercury as a Global Pollutant, Providence, Rhode Island, July 16–21, 2017. We are grateful for comments provided by Britt Hall, Betsy Henry, and Mark Sprenger in early drafts of this paper. Grant support was provided by the U.S. Department of Energy, Environmental System Science Program (DE-SC0017128) and the National Institute of Environmental Health Sciences Superfund Research Program (R01ES024344 awarded to Duke University and R13 ES028077-01 and P42ES007373 awarded to the Dartmouth College Toxic Metals Superfund Research Program). S.J. was supported by the Swedish Research Council (International Postdoc Grant 637-2014-54). The content is solely the responsibility of the authors and does not necessarily represent the official positions and policies of the National Institutes of Health or the US EPA.

Funding Information:
This paper was written as part of the synthesis effort for the 13th International Conference on Mercury as a Global Pollutant, Providence, Rhode Island, July 16–21, 2017. We are grateful for comments provided by Britt Hall, Betsy Henry, and Mark Sprenger in early drafts of this paper. Grant support was provided by the U.S. Department of Energy, Environmental System Science Program (DE-SC0017128) and the National Institute of Environmental Health Sciences Superfund Research Program (R01ES024344 awarded to Duke University and R13 ES028077-01 and P42ES007373 awarded to the Dartmouth College Toxic Metals Superfund Research Program). S.J. was supported by the Swedish Research Council (International Postdoc Grant 637-2014-54). The content is solely the responsibility of the authors and does not necessarily represent the official positions and policies of the National Institutes of Health or the US EPA.

Publisher Copyright:
© 2018, The Author(s).

Keywords

  • Contamination
  • Landcover
  • Mercury synthesis
  • Methylmercury

Fingerprint

Dive into the research topics of 'Challenges and opportunities for managing aquatic mercury pollution in altered landscapes'. Together they form a unique fingerprint.

Cite this