A Review of the Current State and Recent Changes of the Andean Cryosphere

M. H. Masiokas, A. Rabatel, A. Rivera, L. Ruiz, P. Pitte, J. L. Ceballos, G. Barcaza, A. Soruco, F. Bown, E. Berthier, I. Dussaillant, S. MacDonell

Research output: Contribution to journalReview articlepeer-review

39 Scopus citations


The Andes Cordillera contains the most diverse cryosphere on Earth, including extensive areas covered by seasonal snow, numerous tropical and extratropical glaciers, and many mountain permafrost landforms. Here, we review some recent advances in the study of the main components of the cryosphere in the Andes, and discuss the changes observed in the seasonal snow and permanent ice masses of this region over the past decades. The open access and increasing availability of remote sensing products has produced a substantial improvement in our understanding of the current state and recent changes of the Andean cryosphere, allowing an unprecedented detail in their identification and monitoring at local and regional scales. Analyses of snow cover maps has allowed the identification of seasonal patterns and long term trends in snow accumulation for most of the Andes, with some sectors in central Chile and central-western Argentina showing a clear decline in snowfall and snow persistence since 2010. This recent shortage of mountain snow has caused an extended, severe drought that is unprecedented in the hydrological and climatological records from this region. Together with data from global glacier inventories, detailed inventories at local/regional scales are now also freely available, providing important new information for glaciological, hydrological, and climatological assessments in different sectors of the Andes. Numerous studies largely based on field measurements and/or remote sensing techniques have documented the recent glacier shrinkage throughout the Andes. This observed ice mass loss has put Andean glaciers among the highest contributors to sea level rise per unit area. Other recent studies have focused on rock glaciers, showing that in extensive semi-arid sectors of the Andes these mountain permafrost features contain large reserves of freshwater and may play a crucial role as future climate becomes warmer and drier in this region. Many relevant issues remain to be investigated, however, including an improved estimation of ice volumes at local scales, and detailed assessments of the hydrological significance of the different components of the cryosphere in Andean river basins. The impacts of future climate changes on the Andean cryosphere also need to be studied in more detail, considering the contrasting climatic scenarios projected for each region. The sustained work of various monitoring programs in the different Andean countries is promising and will provide much needed field observations to validate and improve the analyses made from remote sensors and modeling techniques. In this sense, the development of a well-coordinated network of high-elevation hydro-meteorological stations appears as a much needed priority to complement and improve the many glaciological and hydro-climatological assessments that are being conducted across the Andes.

Original languageEnglish
Article number99
JournalFrontiers in Earth Science
StatePublished - 23 Jun 2020

Bibliographical note

Funding Information:
This review manuscript has been achieved as part of the ANDEX program (www.gewex.org/project/andex/), which is a prospective Regional Hydroclimate Project (RHP) of the GEWEX Hydroclimatology Panel (GHP). We thank the National Correspondents of the WGMS and the Snow and Ice Working Group (GTNH) of Latinamerica and Caribe/IHP UNESCO for the updated glacier mass balance data. L. Cara from IANIGLA-CONICET helped with the analyses shown in Figure 1. The numerous and constructive comments and suggestions provided by the two reviewers helped to improve the final version of the manuscript and are greatly appreciated. Funding MM, PP, and LR acknowledge the support from IANIGLA-CONICET. ARa acknowledges the support of the Service National d’Observation GLACIOCLIM (https://glacioclim.osug.fr) (UGA, CNRS, IRD, INRAE, IPEV), the LMI GREAT ICE (IRD), and the LabEx OSUG@2020 (Investissements d’avenir, Grant Number ANR-10-LABX56). ARi acknowledges the support of FONDECYT 1171832. EB and ID acknowledge the France Space Agency (CNES), and the Région Occitanie for the Ph.D. fellowship of ID. SM acknowledges the support from ANID-Programa Regional R16a10003.

Publisher Copyright:
© Copyright © 2020 Masiokas, Rabatel, Rivera, Ruiz, Pitte, Ceballos, Barcaza, Soruco, Bown, Berthier, Dussaillant and MacDonell.


  • Andes Cordillera
  • glaciers
  • mountain permafrost
  • seasonal snow
  • southern Andes
  • tropical Andes


Dive into the research topics of 'A Review of the Current State and Recent Changes of the Andean Cryosphere'. Together they form a unique fingerprint.

Cite this